Abstract

A systematic way to design nonuniformly spaced tapped-delay-line (TDL) equalizers is described, and the performance of such equalizers is compared to that of uniformly spaced TDL equalizers with the same number of tap coefficients. It is shown that the signal-to-mean-squared-error ratio at the output of a TDL equalizer can be improved by optimally choosing the positions of the tap weights. An algorithm to find both the tap positions and the corresponding tap weights for a given delay span and a given minimum tap spacing of the equalizer is presented. Typical results are illustrated by using, as an example, the magnetic recording channel. For two target waveforms at different densities of recording, it is shown that there is a potential for saving up to seven equalizer taps. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.