Abstract

In the present study, numerical investigations were performed with optimisation to determine efficient non-uniform suction profiles to control the flow around a circular cylinder in the range of Reynolds numbers 4 < Re < 188.5. Several objectives were explored, namely the minimisation of the separation angle, total drag, and pressure drag. This was in an effort to determine the relationships between the characteristics of the uncontrolled flow and the parameters of the optimised suction control. A variety of non-uniform suction configurations were implemented and compared to the benchmark performance of uniform suction. It was determined that the best non-uniform suction profiles consisted of a distribution with a single locus and compact support. The centre of suction on the cylinder surface for the optimised control, and the quantity of suction necessary to achieve each objective, varied substantially with Reynolds number and also with the separation angle of the uncontrolled flows. These followed predictable relationships. Surprisingly, the location of optimised suction to eliminate separation did not follow the separation point as it moved with Re, but rather it moved in opposition to it towards the trailing edge of the cylinder. Non-uniform suction profiles were much more efficient at eliminating boundary layer separation, requiring the removal of less than half the volume of fluid as uniform control to achieve the same objective. Regardless of the method of control, less net suction was needed to minimise total drag than to eliminate separation, except at low Re. The results suggest that controlling the dynamic aspects of the flow has the most impact for reducing drag. This reinforces the usefulness of other studies that focus on the elimination of vortex shedding. The results show that the balance of drag components must be an important consideration when designing flow control systems and that, when done appropriately, substantial improvement can be seen in the flow characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.