Abstract
In this paper, we investigate non-uniform elementary cellular automata (i.e., one-dimensional cellular automata whose cells can use different Wolfram rules to update their states) in the context of number conservation. As a result, we obtain an exhaustive characterization of such number-conserving cellular automata on all finite grids both with periodic and null boundary conditions. The characterization obtained allows, inter alia, to enumerate all number-conserving non-uniform elementary cellular automata, in particular those that are reversible. Surprisingly, the numbers obtained are closely related to the Fibonacci sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.