Abstract

In this paper we define a complete framework for processing large image sequences for a global monitoring of short range oceanographic and atmospheric processes. This framework is based on the use of a non quadratic regularization technique for optical flow computation that preserves flow discontinuities. We also show that using an appropriate tessellation of the image according to an estimate of the motion field can improve optical flow accuracy and yields more reliable flows. This method defines a non uniform multiresolution approach for coarse to fine grid generation. It allows to locally increase the resolution of the grid according to the studied problem. Each added node refines the grid in a region of interest and increases the numerical accuracy of the solution in this region. We make use of such a method for solving the optical flow equation with a non quadratic regularization scheme allowing the computation of optical flow field while preserving its discontinuities. The second part of the paper deals with the interpretation of the obtained displacement field. For this purpose a phase portrait model used along with a new formulation of the approximation of an oriented flow field allowing to consider arbitrary polynomial phase portrait models for characterizing salient flow features. This new framework is used for processing oceanographic and atmospheric image sequences and presents an alternative to complex physical modeling techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.