Abstract
The thermal consequences of the Brinkman type micropolar nanoparticles are inspected theoretically in presence of microorganisms. The impact of non-uniform heat source and sink is also observed. The thermo-diffusion aspects of nano-materials are visualized for heat and mass transfer phenomenon. The appropriate transformations successfully convert the flow problem into dimensionless form. The shooting numerical computations are performed to access the solution. The accuracy of numerical data is predicted via making comparison with already performed continuations. The graphical significances for the desired parameters is addressed with aims for graphs and tables. The findings are summarized with practical applications. The novel outcomes show that velocity of fluid reduces with inclination factor and Brinkman parameter. The nanofluid temperature is enhanced with non-uniform heat source sink parameters and Brinkman parameter. The nanofluid concentration reduces with viscosity constraint. The obtained results presents applications in the era of thermal engineering, energy production, cooling and heat systems, enzymes etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.