Abstract

The tensile, creep, fatigue and creep-fatigue tests of the nickel-based superalloy GH4169 were carried out. According to the deformation characteristics of GH4169 alloy, the Ohno-Karim kinematic model (O-K model) can be used to describe the tensile behavior. The creep constitutive model presented in this paper can be used to predict the three-stage creep characteristics of the GH4169 alloy. The modified Ohno-Karim kinematic hardening model, combined with an isotropic hardening model, can well predict the cyclic softening behavior of the material under symmetric loads and the mean stress relaxation behavior under asymmetric loads. Based on the modified Ohno-Karim kinematic hardening model, isotropic hardening model and creep constitutive model, a non-unified constitutive model was established. The creep-fatigue behavior of the GH4169 alloy under symmetric and asymmetric loads is simulated by using the non-unified constitutive model. The simulation results are very close to the experimental results; however, the prediction results of the time-dependent relaxation load are relatively small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call