Abstract
Ductile metallic glass foams (DMGFs) are a new type of structural material with a perfect combination of high strength and toughness. Owing to their disordered atomic-scale microstructures and randomly distributed macroscopic voids, the compressive deformation of DMGFs proceeds through multiple nanoscale shear bands accompanied by local fracture of cellular structures, which induces avalanche-like intermittences in stress–strain curves. In this paper, we present a statistical analysis, including distributions of avalanche size, energy dissipation, waiting times and aftershock sequence, on such a complex dynamic process, which is dominated by shear banding. After eliminating the influence of structural disorder, we demonstrate that, in contrast to the mean-field results of their brittle counterparts, scaling laws in DMGFs are characterized by different exponents. It is shown that the occurrence of non-trivial scaling behaviours is attributed to the localized plastic yielding, which effectively prevents the system from building up a long-range correlation. This accounts for the high structural stability and energy absorption performance of DMGFs. Furthermore, our results suggest that such shear banding dynamics introduce an additional characteristic time scale, which leads to a universal gamma distribution of waiting times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.