Abstract

Development of controllable and non-toxic gene transfection systems is a core issue in gene therapy. Photochemical internalization, an innovative strategy in cytosolic release, provides us with an opportunity to develop a light-inducible gene delivery system. In this study, a novel photochemical internalization (PCI)-mediated gene delivery system was synthesized by surface modification of polyamidoamine (PAMAM) dendrimers via 5,10,15-tri(4-acetamidophenyl)-20-mono(4-carboxyl-phenyl)porphyrin (TAMCPP) conjugated to the generation 4 PAMAM dendrimer (G4). This water-soluble PAMAM-TAMCPP conjugate was characterized for cell viability, phototoxicity, DNA complexation, and in vitro transfection activity. The results show that TAMCPP conjugation did not increase the cytotoxicity of the PAMAM dendrimer below 20 μM, but significantly induced cell death after suitable irradiation. Under almost non-toxic G4-TAMCPP-mediated PCI treatment, the expression of green fluorescent protein determined by flow cytometry could be markedly enhanced in HeLa cells. Therefore, the G4-TAMCPP conjugate had an inducible and effective gene transfection activity, and showed considerable potential as a bimodal biomaterial for PCI-mediated gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.