Abstract

Annually, a massive amount of broiler litter (BL) is produced in the world, which causes soil and surface water pollution due to its high nitrogen content and microbial count. While ruminants can use this non-protein nitrogen (NPN) source for microbial protein synthesis. This issue becomes more critical when protein sources are unavailable or very expensive. One of the sources of NPN is BL which is produced at a considerable amount in the world yearly. This aim of this research was to conduct a survey of non-thermal technologies such as electrocoagulation (EC), ultraviolet (UV) radiation, and ultrasound (US) waves on the microbial safety and nutritional value of BL samples as a protein source in ruminant diets. The methodology of this study was based on the use of an EC device with 24V for 60min, UV-C light radiation (249nm) for 1 and 10min, and US waves with a frequency of 28kHz for 5, 10 and 15min to process BL samples compared with shade-dried samples. Chemical composition and nutritional values of processed samples were determined by gas production technique and measurement of fermentation parameters in vitro. Based on the results, microbial safety increased in the samples processed with the US (15min). The EC method had the best performance in reducing the number of fungi and mould. However, none of the methods could remove total bacteria and fungi. Digestibility of BL was similar in shade-dried, EC, and US (10min) treatments. In general, the use of EC and US15 without having adverse effects on gas production caused a decrease in the concentration of ammonia nitrogen. In contrast, it caused a decrease in neutral detergent fibre (NDF) in the investigated substrate. In general, it can be concluded that the use of US5 and EC methods without having a negative effect on the parameters of gas production and fermentation in vitro, while reducing NDF, causes a significant reduction in the microbial load, pathogens, yeast, and mould. Therefore, it is suggested to use these two methods to improve feed digestibility for other protein and feed sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.