Abstract

Compared with that of the transition metal mixed oxide pellet catalyst, the catalytic activity of the supported mixed oxide catalyst was significantly reduced, which was limited in practical industrial applications. In this work, supported Cu-Mn-Ce mixed oxide catalysts were prepared by non-thermal plasma. Catalyst characterization result demonstrated that plasma treatment could promote the proportion of oxygen vacancy and enhance the adsorptive strength of VOCs on the surface of catalyst. Meanwhile, plasma treatment process exerted a slight influence on the pore structure and morphological property of the catalyst. Consequently, CMC/SiO2-P exhibited much higher catalytic activity than CMC/SiO2 prepared by the incipient wetness impregnation method for the catalytic oxidation of toluene and n-hexane. Among the catalysts prepared, the 15%CMC/SiO2-P catalyst even exhibited a high catalytic activity comparable to that of the supported noble metal catalyst for the oxidation of the inert hexane. The T98 of toluene and n-hexane over 15%CMC/SiO2-P was 260 and 280°C under the conditions of VOC concentration at 1000 ppm and WHSV at 20,000 mL·g-1·h-1, respectively. This work provided a novel method for the preparation of the supported transition metal mixed oxide catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call