Abstract

Non‐thermal atmospheric pressure plasma has attracted considerable attention in recent years due to its potential for biomedical applications. Determining the mechanism of the formation of reactive species in liquid treated with plasma is thus of paramount importance for both fundamental and applied research. In this work, the origin of reactive species in plasma‐treated aqueous solutions was investigated by using spin‐trapping, hydrogen and oxygen isotopic labelling and electron paramagnetic resonance (EPR) spectroscopy. The species originating from molecules in the liquid phase and those introduced with the feed gas were differentiated by EPR and 1H NMR analysis of liquid samples. The effects of water vapour and oxygen admixtures in the feed gas were investigated. All the reactive species detected in the liquid samples were shown to be formed largely in the plasma gas phase. It is suggested that hydrogen peroxide (determined by UV/Vis analysis) is formed primarily in the plasma tube, whereas the radical species ⋅OOH, ⋅OH and ⋅H are proposed to originate from the region between the plasma nozzle and the liquid sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.