Abstract

Upcycling is an attractive approach for valorization of waste plastics to valuable chemicals. Here we report the first case study of non-thermal plasma-assisted hydrogenolysis of high-density polyethylene (HDPE) to C1-C3 hydrocarbons. Light alkanes, predominately CH4, C2H6 and C3H8 with >95% selectivity, were obtained under ambient condition as result of favorable thermodynamics and fast reaction kinetics. The findings demonstrated that hydrogenolysis that typically demands above 300 °C with thermal catalysis can occur at room temperature in assistance of non-thermal plasma. This proof-of-concept study showcases a novel strategy for upcycling of plastics to valuable hydrocarbons under ambient condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.