Abstract

We show that the line broadening in quiescent solar prominences is mainly due to non-thermal velocities. We have simultaneously observed a wide range of optically thin lines in quiescent prominences, selected for bright and narrow Mg\,b emission without line satellites from macro-shifts. We find a ratio of reduced widths of H-gamma and H-delta of 1.05 +-0.03 which can hardly be attributed to saturation, since both are optically thin for the prominences observed: tau(gamma)<0.3 ; tau(delta)<0.15. We confirm the ratio of reduced widths of He4772(triplet) and He5015(singlet of 1.1 +-0.05 at higher significance and detect a width ratio of Mgb2 and Mg4571 (both from the triplet system) of 1.3 +-0.1. The discrepant widths of lines from different atoms, and even from the same atom, cannot be represented by a unique pair [T_kin ; V_nth]. Values of T_kin deduced from observed line radiance using models, indicate low temperatures down to T_kin~5000K. Non-thermal velocities, related to different physical states of the respective emitting prominence region, seem to be the most important line broadening mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call