Abstract
Radiation damage mitigation in electronics remains a challenge because the only established technique, thermal annealing, does not guarantee a favorable outcome. In this study, a non-thermal annealing technique is presented, where electron momentum from very short duration and high current density pulses is used to target and mobilize the defects. The technique is demonstrated on 60Co gamma irradiated (5 × 106 rad dose and 180 × 103 rad h−1 dose rate) GaN high electron mobility transistors. The saturation current and maximum transconductance were fully and the threshold voltage was partially recovered at 30 °C or less. In comparison, thermal annealing at 300 °C mostly worsened the post-irradiation characteristics. Raman spectroscopy showed an increase in defects that reduce the 2-dimensional electron gas (2DEG) concentration and increase the carrier scattering. Since the electron momentum force is not applicable to the polymeric surface passivation, the proposed technique could not recover the gate leakage current, but performed better than thermal annealing. The findings of this study may benefit the mitigation of some forms of radiation damage in electronics that are difficult to achieve with thermal annealing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.