Abstract

Studies have been conducted at synchrotron facilities in Europe and Australia to explore a variety of applications of synchrotron X-rays in medicine and biology. We discuss the major technical aspects of the synchrotron irradiation setups, paying specific attention to the Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) as those best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE). Here we provide a summary of these experiments and perspectives on their implications for non-targeted effects in biomedical fields.

Highlights

  • One of the greatest advances in the field of radiation research is the evolution of the use of synchrotron X-rays in a variety of medical and biological applications, extending to imaging, diagnostics, and radiotherapy (RT)

  • Many synchrotron facilities operate with an electron beam energy greater than or equal to 2.4 GeV and high electron-beam currents are achievable in the accelerator ring of third- and fourth-generation synchrotrons, which include the Australian Synchrotron (AS) in Melbourne, the National Synchrotron Light Source (NSLS) in Brookhaven, USA and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, [1,2,3]

  • Synchrotron radiation is required for microbeam radiotherapy (MRT) because: (i) the minimal beam divergence maintains the microbeam geometry at the microscopic level, (ii) the X-ray energy spectrum of 80–150 keV minimizes the range of secondary electrons that make an important contribution to the valley dose, and (iii) the ultra-high dose rates avoid beam smearing due to the cardiovascular movement [14]

Read more

Summary

Introduction

One of the greatest advances in the field of radiation research is the evolution of the use of synchrotron X-rays in a variety of medical and biological applications, extending to imaging, diagnostics, and radiotherapy (RT). Typical photon energies in synchrotron beams dedicated to biomedical applications range from approximately 10 to 150 keV. Many synchrotron facilities operate with an electron beam energy greater than or equal to 2.4 GeV and high electron-beam currents are achievable in the accelerator ring of third- and fourth-generation synchrotrons, which include the Australian Synchrotron (AS) in Melbourne, the National Synchrotron Light Source (NSLS) in Brookhaven, USA and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, [1,2,3]. A table summarizing third- and fourth-generation synchrotrons around the world housing beamlines capable of conducting radiobiological and clinical research is presented in Supplementary data (Section S1). AS and ESRF facilities are best configured for a wide range of biomedical research studies, including animals and potentially human cancer patients in the future. We summarize our findings and outline perspectives for future studies and implications in the biomedical arena

Characteristics of Synchrotron X-rays at AS and ESRF
MRT Delivered in a FLASH Mode
First RIBE Studies at Synchrotrons
In Vivo RIAE Studies at the AS
Inter-Animal Communication of RIBE at the ESRF
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call