Abstract

There is concern about the large amounts of aromatic compounds emitted during coking. Previous studies of coking emissions have been focused on polycyclic aromatic hydrocarbons, dioxin-like compounds, phenols, and volatile organic compounds, but previously unidentified compounds produced during coking may also harm human health. Here, the main pollutants in 69 soil samples from an abandoned coking plant were identified by non-target screening using two-dimensional gas chromatography time-of-flight mass spectrometry. Polycyclic aromatic hydrocarbons, long-chain alkanes, and thiophenes were dominant. High concentrations of thiophenes (benzothiophenes, dibenzothiophenes, and benzonaphtholthiophenes) were found. Quantitative analysis of 12 thiophenes (selected because of their concentrations and detection frequencies) was performed, and the concentrations were 0.03–647 μg/g dry weight, which were extremely high compared with concentrations in soil from uncontaminated sites and other industrial sites. Dibenzothiophene and benzo[b]naphtho[2,1-d]thiophene were dominant, accounting for 69% of the total thiophene concentration. Thiophene profiles in very contaminated areas were different from the profile in coal but similar to the profile in tar. Thiophenes in soil at the coking plant may have been supplied in tar leaks, wastewater, coke oven gases, and exhaust gases. A toxicity assessment indicated a strong likelihood of oxidative stress being induced by exposure to multiple thiophenes at the coking plant. The results suggest that thiophene emissions from coking plants should attract more attention than currently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call