Abstract

Quantum cascade lasers (QCLs) have attracted considerable interest as an alternative tuneable narrow bandwidth light source in the mid-infrared spectral range for chemical sensing. Pulsed QCL spectrometers are often used with short laser pulses and a bias current ramp similar to diode laser spectroscopy. Artefacts in the recorded spectra such as disturbed line shapes or underestimated absorption coefficients have been reported. A detailed time-resolved high-bandwidth analysis of individual pulses during a laser sweep has been performed. Quantitative results for CH4 absorption features around 1347 cm−1 (7.42 μm) fell short of the expected values for reasonable operating conditions of the QCL. The origin of the artefacts using short pulses was identified to be partly of the same nature as in the case of long laser pulses. A complex combination with the tuning principle was found, leading to an apparently increased instrumental broadening (effective line width) and underestimated concentrations at low-pressure conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.