Abstract

Activating mutations of human K-Ras proteins are among the most common oncogenic mutations, present in approximately 30% of all human cancers. Posttranslational modifications to K-Ras guide it to the plasma membrane and disruption of this localization inhibits the growth of Ras-driven cancers. The human isoprenylcysteine carboxyl methyltransferase (hIcmt) enzyme catalyzes the final α-carboxyl methylesterification of the C-terminal farnesyl cysteine of K-Ras, which is necessary for its proper localization. Thus, hIcmt inhibition is a regarded as a promising cancer therapy. A high quality inhibitor of hIcmt with in vivo activity would advance hIcmt research and drug development. Herein, Wwe report the results of a screen for small molecule hIcmt inhibitors in a library of molecules that were not hIcmt substrate analogs. The lead compound identified by this screen (1) was modified to remove chemical liabilities and to increase potency. The most potent resulting compound (5) inhibited hIcmt in vitro with low micromolar potency (IC50 = 1.5 ± 0.2 μM) and was kinetically characterized as a competitive inhibitor for prenylated substrates and a non-competitive inhibitor for the cofactor and methyl donor S-adenosylmethionine (SAM). These inhibitors offer important structure activity relationships for the future development of hIcmt inhibitors with in vivo activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.