Abstract
Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is challenging due to the need for whole components and energy-effective conversion. Herein, Halomonas sp. Y3, a ligninolytic bacterium with the capacity to produce PHB from lignin and cellulose- and hemicellulose-derived sugars, is employed to explore its feasibility. This strain shows high sugar tolerance up to 200 g/L of glucose and 120 g/L of xylose. A dual anti-microbial contamination system (DACS) containing alkali-halophilic system (AHS) and phosphite-urea system (PUS) is presented, successfully achieving a completely aseptic effect and resulting in a total of 8.2 g of PHB production from 100 g bamboo biomass. We further develop a stage-fed-batch fermentation to promote the complete utilization of xylose. Approximately 69.99 g of dry cell weight (DCW) and 46.45 g of PHB with 66.35 % are obtained from a total of 296.58 g of sugars and 5.70 g of lignin, showing a significant advancement for LCB bioconversion. We then delete the native phosphate transporters, rendering the strain unable to grow on phosphate-loaded media, effectively improving the strain biosafety without compromising its ability to produce PHB. Overall, our findings demonstrate the potential of Y3 as a classic bacterium strain for PHB production with potential uses in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.