Abstract

Three dimensional α-Al dendrite tip growth under varying solute gradients in an Al-Cu-Si alloy melt has been studied using real time synchrotron X-ray imaging and mathematical modelling. X-radiographic image sequences with high temporal and spatial resolution were processed and analysed to retrieve three-dimensional spatial details of the evolving dendrite and the solute concentration field, providing vastly improved estimates for the latter, in particular for the melt regions adjacent to the dendrite tips. Computational results obtained from an extended Horvay-Cahn dendrite tip model, capable of taking into account the effects of sample confinement, showed good agreement with the experimental data, and can be taken to verify the robustness of the 3D data extraction protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.