Abstract

We analyzed the influence of applied bias changing and external magnetic field switching on the non-stationary spin-polarized currents behavior in the correlated single-level quantum dot coupled to the non-magnetic leads. It was demonstrated that spin polarization and direction of the non-stationary currents could be changed to the opposite ones by applied bias voltage. The degree of the currents spin polarization changes the sign following the applied bias polarity. The possibility of spin-polarized train pulses generation with the opposite degree of polarization was revealed. Moreover, the presence of external magnetic field allows considering correlated single-level quantum dot as an effective non-stationary spin filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call