Abstract

An efficient and accurate FEM based method is proposed for studying non-stationary random vibration of structures subjected to moving loads. The loads are assumed to be a stationary process with constant mean value. The non-stationary power spectral densities (PSD) and the time dependent standard deviations of dynamic response are derived by using the pseudo excitation method (PEM) to transform this random excitation problem into a deterministic harmonic excitation one. The precise integration method (PIM) is extended to solve the equation of motion of beams under moving harmonic loads by enhancing the very recent consistent decomposition procedure, in order to simulate the movement of the loads. Six numerical examples are given to show the very high efficiency and accuracy of the method and also to deduce some useful preliminary conclusions from investigation of the dynamic statistical characteristics of a simply supported beam and of a symmetrical three span beam with its centre span unequal to the outer ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.