Abstract

The most common assumption in geostatistical modeling of malaria is stationarity, that is spatial correlation is a function of the separation vector between locations. However, local factors (environmental or human-related activities) may influence geographical dependence in malaria transmission differently at different locations, introducing non-stationarity. Ignoring this characteristic in malaria spatial modeling may lead to inaccurate estimates of the standard errors for both the covariate effects and the predictions. In this paper, a model based on random Voronoi tessellation that takes into account non-stationarity was developed. In particular, the spatial domain was partitioned into sub-regions (tiles), a stationary spatial process was assumed within each tile and between-tile correlation was taken into account. The number and configuration of the sub-regions are treated as random parameters in the model and inference is made using reversible jump Markov chain Monte Carlo simulation. This methodology was applied to analyze malaria survey data from Mali and to produce a country-level smooth map of malaria risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.