Abstract

Heavy rainfall events often occur in southern French Mediterranean regions during the autumn, leading to catastrophic flood events. A non-stationary peaks-over-threshold (POT) model with climatic covariates for these heavy rainfall events is developed herein. A regional sample of events exceeding the threshold of 100 mm/d is built using daily precipitation data recorded at 44 stations over the period 1958–2008. The POT model combines a Poisson distribution for the occurrence and a generalized Pareto distribution for the magnitude of the heavy rainfall events. The selected covariates are the seasonal occurrence of southern circulation patterns for the Poisson distribution parameter, and monthly air temperature for the generalized Pareto distribution scale parameter. According to the deviance test, the non-stationary model provides a better fit to the data than a classical stationary model. Such a model incorporating climatic covariates instead of time allows one to re-evaluate the risk of extreme precipitation on a monthly and seasonal basis, and can also be used with climate model outputs to produce future scenarios. Existing scenarios of the future changes projected for the covariates included in the model are tested to evaluate the possible future changes on extreme precipitation quantiles in the study area. Editor Z.W. Kundzewicz; Associate editor K. Hamed Citation Tramblay, Y., Neppel, L., Carreau, J., and Najib, K., 2013. Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrological Sciences Journal, 58 (2), 280–294.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.