Abstract

In this article, we study the novel concept of non-stationary iterated function systems (IFSs) introduced by Massopust in 2019. At first, using a sequence of different contractive operators, we construct non-stationary α-fractal functions on the space of all continuous functions. Next, we provide some elementary properties of the fractal operator associated with the non-stationary α-fractal functions. Further, we show that the proposed interpolant generalizes the existing stationary interpolant in the sense of IFS. For a class of functions defined on an interval, we derive conditions on the IFS parameters so that the corresponding non-stationary α-fractal functions are elements of some standard spaces like bounded variation space, convex Lipschitz space, and other function spaces. Finally, we discuss the dimensional analysis of the corresponding non-stationary α-fractal functions on these spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.