Abstract

The effects of evolutionary wind spectra with different modulation functions on the nonstationary buffeting responses of suspension bridges are uncertain. After considering the nonlinear buffeting force of a twin-box girder, the buffeting responses of a cross-sea suspension bridge under four nonstationary wind speed models with two uniform modulation and two nonuniform modulation functions were investigated in this paper. Through the evolutionary spectral theory, the nonstationary wind speed models at the bridge site with four typical modulation functions were generated and then validated from the autocorrelation and power spectrum density. The results show that the mean and root-mean-square error (RMSE) values of vertical and horizontal wind speeds by using nonuniform modulation functions (NMF1 and NMF2) were much larger than those by using uniform modulation functions (uMF1 and uMF2). Moreover, most of the peak and RMSE values for the torsional and lateral displacement under the NMF1 are the largest, while the RMSE values of the vertical displacement without the modulation function are the largest. With the increase of the circular frequency γ or decrease of the initial phase θ in the cosine function of time-varying mean wind speeds, the RMS values in three displacement responses of the bridge deck become larger.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call