Abstract
Hybrid system modelers have become a corner stone of complex embedded system development. Embedded systems include not only control components and software, but also physical devices. In this area, Simulink is a de facto standard design framework, and Modelica a new player. However, such tools raise several issues related to the lack of reproducibility of simulations (sensitivity to simulation parameters and to the choice of a simulation engine). In this paper we propose using techniques from non-standard analysis to define a semantic domain for hybrid systems. Non-standard analysis is an extension of classical analysis in which infinitesimal (the ε and η in the celebrated generic sentence ∀ε∃η… of college maths) can be manipulated as first class citizens. This approach allows us to define both a denotational semantics, a constructive semantics, and a Kahn Process Network semantics for hybrid systems, thus establishing simulation engines on a sound but flexible mathematical foundation. These semantics offer a clear distinction between the concerns of the numerical analyst (solving differential equations) and those of the computer scientist (generating execution schemes). We also discuss a number of practical and fundamental issues in hybrid system modelers that give rise to non-reproducibility of results, non-determinism, and undesirable side effects. Of particular importance are cascaded mode changes (also called “zero-crossings” in the context of hybrid systems modelers).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.