Abstract

We investigate non-standard Hamiltonian effects on neutrino oscillations, which are effective additional contributions to the vacuum or matter Hamiltonian. Since these effects can enter in either flavor or mass basis, we develop an understanding of the difference between these bases representing the underlying theoretical model. In particular, the simplest of these effects are classified as ``pure'' flavor or mass effects, where the appearance of such a ``pure'' effect can be quite plausible as a leading non-standard contribution from theoretical models. Compared to earlier studies investigating particular effects, we aim for a top-down classification of a possible ``new physics'' signature at future long-baseline neutrino oscillation precision experiments. We develop a general framework for such effects with two neutrino flavors and discuss the extension to three neutrino flavors, as well as we demonstrate the challenges for a neutrino factory to distinguish the theoretical origin of these effects with a numerical example. We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non-standard interactions in the creation and detection processes) and that the non-standard effects on Hamiltonian level can be distinguished from other non-standard effects (such as neutrino decoherence and decay) if we consider specific imprint of the effects on the energy spectra of several different oscillation channels at a neutrino factory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.