Abstract

The four-dimensional Minkowski space-time is considered as a three-brane embedded in five dimensions, using solutions of five-dimensional supergravity. These backgrounds have a string theoretical interpretation in terms of D3-brane distributions. By studying linear fluctuations of the graviton we find a zero-mode representing the massless graviton in four-dimensional space-time. The novelty of our models is that the graviton spectrum has a genuine mass gap (independent of the position of the world-brane) above the zero-mode or it is discrete. Hence, an effective four-dimensional theory on a brane that includes the massless graviton mode is well defined. The gravitational force between point particles deviates from the Newton law by Yukawa-type corrections, which we compute explicitly. We show that the parameters of our solutions can be chosen such that these corrections lie within experimental bounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call