Abstract

We give examples of countable linear groups $\Gamma < \operatorname {SL}_{{\mathbf {3}}}({\mathbf {R}})$, with no nontrivial normal abelian subgroups, that admit a faithful sharply $2$-transitive action on a set. Without the linearity assumption, such groups were recently constructed by Rips, Segev, and Tent in [J. Eur. Math. Soc. 19 (2017), pp. 2895–2910]. Our examples are of permutational characteristic $2$, in the sense that involutions do not fix a point in the $2$-transitive action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.