Abstract

We are studying dispersion of finite-size particles in a turbulent plane Couette flow by numerical simulations. The effect of particle non-sphericity was discussed (particles are neutrally buoyant and shape varies from oblate to prolate, aspect ratio is ranging from 0.5 to 2). Particle dispersion is analyzed also when inertia is considered for different particle densities for spherical particles (while keeping comparable Stokes number). This work yields evidences that the particle distribution in turbulent flow coherent structures is in general correlated to the cycle of regeneration of turbulence in Couette flow (the strongest correlation being for massless bubbles), and that the particle residence time in large scale vortices is equal to the characteristic time scale of the flow regeneration cycle. Open image in new window

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.