Abstract

The main purpose of this paper is to explore the patterns of the bursting oscillations and the non-smooth dynamical behaviours in a Filippov-type system which possesses parametric and external periodic excitations. We take a coupled system consisting of Duffing and Van der Pol oscillators as an example. Owing to the existence of an order gap between the exciting frequency and the natural one, we can regard a single periodic excitation as a slow-varying parameter, and the other periodic excitations can be transformed as functions of the slow-varying parameter when the exciting frequency is far less than the natural one. By analysing the subsystems, we derive equilibrium branches and related bifurcations with the variation of the slow-varying parameter. Even though the equilibrium branches with two different frequencies of the parametric excitation have a similar structure, the tortuousness of the equilibrium branches is diverse, and the number of extreme points is changed from 6 to 10. Overlying the equilibrium branches with the transformed phase portrait and employing the evolutionary process of the limit cycle induced by the Hopf bifurcation, the critical conditions of the homoclinic bifurcation and multisliding bifurcation are derived. Numerical simulation verifies the results well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.