Abstract

The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow. The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction. The buoyancy effects in terms of temperature and concentration differences are inserted in the -momentum equation. The aspects of heat and mass transfer are studied using dimensionless thermophoresis, Schmidt and Brownian motion parameters. The governing coupled partial differential system (PDEs) is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations. The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c. Finally, the quantitative effects of emerging dimensionless quantities on the non-dimensional velocity, temperature and mass concentration in the boundary layer are conferred graphically, and inferences are drawn that important quantities of interest are substantially affected by these parameters. It is concluded that non-similar modeling, in contrast to similar models, is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call