Abstract

AbstractThis study aims to examine the magnetized flow of Ag–MgO/water hybrid nanofluid over an extending sheet implanted in Darcy porous medium. Thermal radiations, Joule and viscous dissipations are incorporated into energy equation to account for heat transfer. The convective heat flux boundary condition is imposed at sheet surface. Using non‐similar conversions, governing equations are converted to a system of dimensionless partial differential equations (PDEs). These equations are transformed into ordinary ones by using local non‐similar method. MATLAB's bvp4c function is used to numerically simulate the ordinary differential equations (ODEs). The velocity and thermal profiles for positive variation of essential parameters are illustrated graphically. It was concluded that the velocity profile increases for the rising Darcy number. On the other hand, the temperature profile increased for the positive variation of magnetic number, volume fraction, radiation parameter, Eckert number and Biot number while decreasing for all other parameters. The skin friction coefficient and heat transfer rates are thoroughly investigated and findings are reported through tables. It was found that the magnitude of skin friction coefficient rises with an increase in volume fraction, suction and magnetic parameters while the heat transfer is enhanced by increases in Darcy number, suction parameter, radiation parameter, and Biot number. As per the author's knowledge, no work has previously been published on the current model using the local non‐similarity method. This work may provide insight to researchers interested in thermal systems and solar energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.