Abstract

BackgroundCardiac arrest can present with asystole, Pulseless Electrical Activity (PEA), or Ventricular Fibrillation/Tachycardia (VF/VT). We investigated the transition intensity of Return of spontaneous circulation (ROSC) from PEA and asystole during in-hospital resuscitation. Materials and methodsWe included 770 episodes of cardiac arrest. PEA was defined as ECG with >12 QRS complexes per min, asystole by an isoelectric signal >5 seconds. The observed times of PEA to ROSC transitions were fitted to five different parametric time-to-event models. At values ≤0.1, transition intensities roughly represent next-minute probabilities allowing for direct interpretation. Different entities of PEA and asystole, dependent on whether it was the primary or a secondary rhythm, were included as covariates. ResultsThe transition intensities to ROSC from primary PEA and PEA after asystole were unimodal with peaks of 0.12 at 3 min and 0.09 at 6 min, respectively. Transition intensities to ROSC from PEA after VF/VT, or following transient ROSC, exhibited high initial values of 0.32 and 0.26 at 3 minutes, respectively, but decreased.The transition intensity to ROSC from initial asystole and asystole after PEA were both about 0.01 and 0.02; while asystole after VF/VT had an intensity to ROSC of 0.15 initially which decreased. The transition intensity from asystole after temporary ROSC was constant at 0.08. ConclusionThe immediate probability of ROSC develops differently in PEA and asystole depending on the preceding rhythm and the duration of the resuscitation attempt. This knowledge may aid simple bedside prognostication and electronic resuscitation algorithms for monitors/defibrillators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call