Abstract

According to the mirror mechanism the discharge of F5 mirror neurons of a monkey observing another individual performing an action is a motor representation of the observed action that may serve to understand or learn from the action. This hypothesis, if strictly interpreted, requires mirror neurons to exhibit an action tuning that is shared between action observation and execution. Due to insufficient data it remains contentious if this requirement is met. To fill in the gaps, we conducted an experiment in which identical objects had to be manipulated in three different ways in order to serve distinct action goals. Using three methods, including cross-task classification, we found that at most time points F5 mirror neurons did not encode observed actions with the same code underlying action execution. However, in about 20% of neurons there were time periods with a shared code. These time periods formed a distinct cluster and cannot be considered a product of chance. Population classification yielded non-shared coding for observed actions in the whole population, which was at times optimal and consistently better than shared coding in differentially selected subpopulations. These results support the hypothesis of a representation of observed actions based on a strictly defined mirror mechanism only for small subsets of neurons and only under the assumption of time-resolved readout. Considering alternative concepts and recent findings, we propose that during observation mirror neurons represent the process of a goal pursuit from the observer's viewpoint. Whether the observer's goal pursuit, in which the other's action goal becomes the observer's action goal, or the other's goal pursuit is represented remains to be clarified. In any case, it may allow the observer to use expectations associated with a goal pursuit to directly intervene in or learn from another's action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.