Abstract

This paper presents a novel instruction cache prefetching mechanism for multiple-issue processors. Such processors at high clock rates often have to use a small instruction cache which can have significant miss rates. Prefetching from secondary cache or even memory can hide the instruction cache miss penalties, but only if initiated sufficiently far ahead of the current program counter. Existing instruction cache prefetching methods are strictly sequential and do not prefetch past conditional branches which may occur almost every clock cycle in wide-issue processors. In this study, multi-level branch prediction is used to overcome this limitation. By keeping branch history and target addresses, two methods are defined to predict a future PC several branches past the current branch. A prefetching architecture using such a mechanism is defined and evaluated with respect to its accuracy, the impact of the instruction prefetching on performance, and its interaction with sequential prefetching. Both PC-based and history-based predictors are used to perform a single-lookup prediction. Targeting an on-chip L2 cache with low latency, prediction for 3 branch levels is evaluated for a 4-issue processor and cache architecture patterned after the DEC Alpha-21164. It is shown that history-based predictor is more accurate, but both predictors are effective. The prefetching unit using them can be effective and succeeds when the sequential prefetcher fails. In addition, non-sequential prefetching is better at hiding latency due to earlier initiation. The two types of prefetching eliminate different types of misses and thus can be effectively combined to achieve better performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call