Abstract

The energetic molecular crystal cyclotrimethylene trinitramine (HMX) is a key constituent in common plastic bonded explosives. Its plastic deformation under shock conditions is important in reaction initiation and detonation. Here, we study the effect of high pressure on dislocation slip using isothermal-isobaric atomistic simulations. We consider two slip planes, (011) and (101), that are reported to be most active under ambient conditions. For all slip systems considered, the effect of pressure is to increase the critical resolved shear stress for dislocation slip. Pressure may fully inhibit dislocation-based plasticity if the resolved shear stress is not increased in proportion. On the other hand, at sufficiently high shear stresses, the crystal loses shear stability. Therefore, in a broad range of shock conditions, plastic deformation takes place by a combination of dislocation glide in some slip systems and localization in some other systems, with dislocation activity being gradually inhibited as the shock pressure increases. This provides new data on the physical basis of plastic deformation in HMX, indicating that mesoscale representations of plasticity must include shear localization, which is more important under these conditions than dislocation plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.