Abstract

The use of a light-weight deep learning Convolutional Neural Network (CNN) augmented with the power of Fuzzy Non-Sample Shearlet Transformation (FNSST) has successfully solved the problem of reducing noise and artifacts in Low-Dose Computed Tomography (LDCT) pictures. Both the Normal-Dose Computed Tomography (NDCT) and the Low-Dose Computed Tomography (LDCT) images from the dataset are subjected to the FNSST decomposition procedure during the training phase, producing high-frequency sub-images that act as input for the CNN. The CNN creates a meaningful connection between the high-frequency sub-images from LDCT and their corresponding residual sub-images during the training operation. The CNN is given the capacity to distinguish between LDCT high-frequency sub-images and expected high-frequency sub-images, which frequently have varying levels of noise or artifacts, especially in a fuzzy setting. The FNSST-CNN then successfully distinguishes LDCT high-frequency sub-images from the expected high-frequency sub-images during the testing phase, thereby reducing noise and artifacts. When compared to other approaches like KSVD, BM3D, and conventional image domain CNNs, the performance of FNSST-CNN is impressive as shown by better peak signal-to-noise ratios, stronger structural similarity, and a closer likeness to NDCT pictures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call