Abstract

This paper describes the Fast Radial Basis Function (RBF) method for cardiac motion tracking in 3D CT using non-rigid medical image registration based on parameterized (regular) surfaces. The technique is a point-based registration evaluation algorithm which does register 3D MR or CT images in real time. We first extract the surface of the whole heart 3D CT and its contrast enhanced part (left ventricle (LV) blood cavity) of each dataset with a semiautomatic contouring and a fully-automatic triangulation method followed by a global surface parameterization and optimization algorithm. In second step, a set of registration experiments are run to calculate the deformation field at various phases of cardiac motion or cycle from CT images, which results into significant deformation during each phase of a cycle. The surface points of the whole heart and LV are used to register the source systole image to various diastole target images taken at different phases during a heart beat. Our registration accuracy improves with the increase in number of salient feature points (i.e. optimized parameterized surfaces) and it has no effect on the speed of the algorithm (i.e. still less than a second). The results show that the target registration error is less than 3[Formula: see text]mm (2.53) and the performance of the Fast RBF algorithm is less than a second using a whole heart CT dataset of a single patient taken over the course of the entire cardiac cycle. At the end, the results for recovery (or analysis) of bigger deformation in heart CT images using the Fast RBF algorithm is compared to the state-of-the-art Free Form Deformation (FFD) registration technique. It is proved that the Fast RBF method is performing better in speed and slightly less accurate than the FFD (when measured in terms of NMI) due to iterative nature of the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call