Abstract
A recent conjecture that appeared in three papers by Bigdeli–Faridi, Dochtermann, and Nikseresht, is that every simplicial complex whose clique complex has shellable Alexander dual, is ridge-chordal. This strengthens the long-standing Simon's conjecture that the k-skeleton of the simplex is extendably shellable, for any k. We show that the stronger conjecture has a negative answer, by exhibiting an infinite family of counterexamples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.