Abstract

Non-resonant lasers exhibit the potential for stable and consistent narrowband light sources. Furthermore, non-resonant lasers do not require well-defined optics, and thus has considerably diversified the available types of laser gain materials including powders, films, and turbid ceramics. Despite these intrinsic advantages, the practical applications of non-resonant lasers have been limited so far, mainly because of their low power efficiency and omnidirectional emission. To overcome these limitations, here we propose a light trap design for non-resonant lasers based on a spherical scattering cavity with a small entrance. Using a porous Nd3+:YAG ceramic, directional laser emission could be observed with significant enhancements in the slope efficiency and linewidth (down to 32 pm). A theoretical model is also developed to describe and predict the operation characteristics of proposed non-resonant laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.