Abstract

The zero-field magnetic phases of NdCu 2 have been investigated using non-resonant X-ray scattering and the results are compared to those from neutron scattering. The reduced scattering volume of X-ray scattering as opposed to the bulk average measured by neutron scattering allowed us to investigate the magnetic properties in the near-surface region. As in the neutron scattering experiment, three magnetic phases AF1, AF2 and AF3 have been observed, and they exist in the same degree of order as the crystal lattice. In the near-surface region, the large magnetic unit cell present in AF2 is slightly different as compared to the bulk. Our results validate the first order of the phase transitions between the magnetic phases and allow us to localize the stabilization of the magnetic phase AF2 in real space. The modulation of the low-temperature structures AF1 and AF2 are squared up. In addition, we find a magnetically induced modulation of the electronic distribution in the low-temperature phase AF1 which is consistent with a lattice distortion (magneto-elastic coupling).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.