Abstract

The non-relativistic (scaling) limit of a particle-field Hamiltonian H, called a Dirac–Maxwell operator, in relativistic quantum electrodynamics is considered. It is proven that the non-relativistic limit of H yields a self-adjoint extension of the Pauli–Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics. This is done by establishing in an abstract framework a general limit theorem on a family of self-adjoint operators partially formed out of strongly anticommuting self-adjoint operators and then by applying it to H.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.