Abstract

According to accepted dosimetry protocols, the “radiation quality correction factor”kQ accounts for the energy-dependent changes of detector responses under the conditions of clinical dosimetry for high-energy photon radiations. More precisely, a factor kQR is valid under reference conditions, i.e. at a point on the beam axis at depth 10 cm in a large water phantom, for 10×10 cm2 field size, SSD 100 cm and the given radiation quality with quality index Q. Therefore, a further correction factor kNR has been introduced to correct for the influences of spectral quality changes when detectors are used under non-reference conditions such as other depths, field sizes and off-axis distances, while under reference conditions kNR is normalized to unity. In this paper, values of kNR are calculated for 6 and 15 MV photon beams, using published data of the energy-dependent responses of various radiation detectors to monoenergetic photon radiations, and weighting these responses with validated photon spectra of clinical high-energy photon beams from own Monte-Carlo-calculations for a wide variation of the non-reference conditions within a large water phantom. Our results confirm the observation by Scarboro et al. [26] that kNR can be represented by a unique function of the mean energy Em, weighted by the spectral photon fluence. Accordingly, the numerical variations of Em with depth, field size and off-axis distance have been provided. Throughout all considered conditions, the deviations of the kNR values from unity are at most 2% for a Farmer type ion chamber, and they remain below 15% for the thermoluminescent detectors LiF:Mg,Ti and LiF:Mg,Cu,P. For the shielded diode EDP-10, kNR varies from unity up to 20%, while the unshielded diode EDD-5 shows deviations up to 60% in the peripheral region. Thereby, the restricted application field of unshielded diodes has been clarified. For small field dosimetry purposes kNR can be converted into kNCSF, the non-calibration condition correction factor normalized to unity for a 4×4 cm2 calibration field. For the unshielded Si diodes needed in small-field dosimetry, the values of kNCSF are closer to unity than the associated kNR values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call