Abstract
Plastidial ω-3 desaturase FAD7 is a major contributor to trienoic fatty acid biosynthesis in the leaves of Arabidopsis plants. However, the precise contribution of the other plastidial ω-3 desaturase, FAD8, is poorly understood. Fatty acid and lipid analysis of several ω-3 desaturase mutants, including two insertion lines of AtFAD7 and AtFAD8, showed that FAD8 partially compensated the disruption of the AtFAD7 gene at 22°C, indicating that FAD8 was active at this growth temperature, contrasting to previous observations that circumscribed the FAD8 activity at low temperatures. Our data revealed that FAD8 had a higher selectivity for 18:2 acyl-lipid substrates and a higher preference for lipids other than galactolipids, particularly phosphatidylglycerol, at any of the temperatures studied. Differences in the mechanism controlling AtFAD7 and AtFAD8 gene expression at different temperatures were also detected. Confocal microscopy and biochemical analysis of FAD8-YFP over-expressing lines confirmed the chloroplast envelope localization of FAD8. Co-localization experiments suggested that FAD8 and FAD7 might be located in close vicinity in the envelope membrane. FAD8-YFP over-expressing lines showed a specific increase in 18:3 fatty acids at 22°C. Together, these results indicate that the function of both plastidial ω-3 desaturases is coordinated in a non-redundant manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.