Abstract

We consider a non-reciprocally coupled two-field Cahn-Hilliard system that has been shown to allow for oscillatory behaviour and suppression of coarsening. After introducing the model, we first review the linear stability of steady uniform states and show that all instability thresholds are identical to the ones for a corresponding two-species reaction-diffusion system. Next, we consider a specific interaction of linear modes-a 'Hopf-Turing' resonance-and derive thecorresponding amplitude equations using a weakly nonlinear approach. We discuss the weakly nonlinear results and finally compare them with fully nonlinear simulations for a specific conserved amended FitzHugh-Nagumo system. We conclude with a discussion of the limitations of the employed weakly nonlinear approach. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.