Abstract

We investigate numerically a non-reciprocal switching behavior in strongly modulated waveguide Bragg gratings (WBGs) having a longitudinally asymmetric stopband configuration. The minimum power predicted for a stable switching operation is found to be approximately 77 mW for a realistic waveguide structure made of prospective materials; we assume in this paper a nano-strip InGaAsP/InP waveguide having longitudinally asymmetric modulation of the waveguide width. The analysis has been performed with our in-house nonlinear finite-difference time-domain (FDTD) code adapted to parallel computing. The numerical results clearly show low-threshold Schmitt trigger operation, as well as non-reciprocal transmission property where the switching threshold for one propagation direction is lower than that for the other direction. In addition, we discuss the modulation-like instability phenomena in such nonlinear periodic devices by employing both an instantaneous Kerr nonlinearity and a more involved saturable nonlinearity model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.