Abstract

In recent years, active periodic structures with in-time modulated parameters have drawn ever-increasing attention due to their peculiar (and sometimes exotic) wave propagation properties. Although many experimental works have shown the efficacy of time-modulation strategies, the benchmarks proposed until now have been mostly proof-of-concept demonstrators, with little attention to the feasibility of the solution for practical purposes. In this work, we propose a micro electro-mechanical system (MEMS) periodic structure with modulated electromechanical stiffness featuring non-reciprocal band-gaps that are frequency bands where elastic waves are allowed to travel only in one direction. To this aim, we derive a simplified analytical lumped-parameter model, which is then verified through numerical simulations of both the lumped-parameter system and the high-fidelity multiphysics finite element model including electrostatic effects. We envision that this system, which can easily be manufactured through standard MEMS production processes, may be used as a directional filter in MEMS devices such as insulators and circulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call