Abstract

Electromagnetically induced transparency (EIT) provides a powerful mechanism for controlling light propagation in a dielectric medium, and for producing slow and fast light. EIT traditionally arises from destructive interference induced by a nonradiative coherence in an atomic system. Stimulated Brillouin scattering (SBS) of light from propagating hypersonic acoustic waves has also been used successfully for the generation of slow and fast light. However, EIT-type processes based on SBS were considered infeasible because of the short coherence lifetime of hypersonic phonons. Here, we report a new Brillouin scattering induced transparency (BSIT) phenomenon generated by acousto-optic interaction of light with long-lived propagating phonons. We demonstrate that BSIT is uniquely non-reciprocal due to the propagating acoustic phonon wave and accompanying momentum conservation requirement. Using a silica microresonator having naturally occurring forward-SBS phase-matched modal configuration, we show that BSIT enables compact and ultralow-power slow-light generation with delay-bandwidth product comparable to state-of-the-art SBS systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.